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Search for Fourth Generation Neutral Heavy
Leptons

The D@ Collaboration'®
(July 1995)

A search for fourth generation neutral heavy leptons (v4) in W decays was carried
out with the D@ detector at the Fermilab Tevatron at \/E = 1.8 TeV. The v, is
assumed to be produced via mixing with the first generation neutrino only. We
looked for a three electron final state event topology. The data used in this analysis
represent 12.2 pb~! taken during the 1992 — 1993 run. No candidates were found.
We set a preliminary limit beyond the LEP limit for the considered mixing case on
the |Ue4|2 — m,, plane.
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I. MOTIVATION

Among all possible new particle searches, a fourth generation neutrino draws the most
immediate attention. Taking the mass structure of the known fundamental fermions as
the most natural approach, the neutrino would be the lightest member of a new fourth
generation and thus the most accessible to discovery by present experiments.

II. PHYSICS

We search for a fourth generation sequential Dirac neutrino (v4) in W decays, which
means that the fourth generation neutrino is the simplest extension of the three generation
Standard Model (SM) neutrinos; 4.e. it has the same weak interaction properties as the
three generation neutrinos. Measurements at the SLAC Linear Collider (1) and the CERN
LEP Collider (2) rule out the possibility of a v4 at 95 % confidence level for a mass smaller
than 45 GeV/c2.

If such a fourth generation neutrino exists, it could be massive and mixed to other gener-
ations in analogy with the quark sector. Assuming the mass of the v4 to be less than that
of its charged partner, the channels open for the decay of the v, are as shown in Fig. 1.
Assuming the v4 mixes with only one other generation, its lifetime can be expressed as (1)
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FIG. 1. Possible v; decay channels.

(1)
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where f is a phase space suppression factor for massive final state particles which is ~ 1

for m,, > 45 GeV.
The production and decay of v4 in pp collisions via W may be represented (in lowest
order) by the diagram in Fig. 2.

(s — 1" X+) = [

my,

FIG. 2. Feynman diagram describing production and decay of a massive fourth generation neu-
trino in pp collisions via W.
The expected event topology is therefore (e.g. for vy — ¥4 mixing)
eee+ Ip ~ 1142 %
eep+ Br ~ 1142 %
Wt - ety —
ee t(jet) + Ep ~ 7 %
e e+ 2jets ~ 67T%

The underlined tri — lepton (3!) final states are a very distinctive signature consisting
of three charged leptons and missing transverse energy (Fr ) from the neutrino with little
background. The additional two per cent in the eee and eey channel are from the leptonic
decays of the tau; they are not considered in this analysis. The expected number of produced
trilepton events is given by

N(pﬁ—> W — iyl — 3l) =0- BT(W — eu) . /[,dt-fm- | Upa |2 (2)
x Br(vy — 2lv) - €(31)
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where €(3!) is the trilepton detection efficiency, o is the W production cross section, and
fm is the mass threshold factor (3).

fn = [1— (m”4)2]2- [1+ M] (3)

(mw ) 2(mw )

III. ANALYSIS

In this analysis mixing of the v, with the first lepton generation neutrino is assumed with
the search restricted to the eee + F channel. Events were selected from data taken with
the DO detector (4) at the Fermilab Tevatron at /s = 1.8 TeV. The data used in this
analysis represent 12.2 pb~! accumulated during the 1992 — 1993 run.

Two triggers (combined as logical .OR.) with the following specifications were utilized:

e a single electron trigger requiring an electromagnetic cluster with transverse energy
E7 > 20 GeV, passing shape and isolation cuts;

e a dielectron trigger requiring 2 electromagnetic clusters, each with Ep > 10 GeV,
passing isolation cuts.

From these data, three-electron events were selected offline requiring all three electrons to
have Ep > 5 GeV, pseudorapidity |n| < 2.5, matching 1 or 2 drift chamber tracks and to
pass isolation and shape cuts. Only 10 events survive this loose filter. Subsequently, tighter
quality requirements for the electrons and kinematic cuts on electron E7 and event J; were
used to further separate signal from background.

The kinematic cuts on the electron E7 are partly dictated by the Ep thresholds of the
utilized triggers. Two sets of offline kinematic requirements (again combined by logical
.OR.) are used corresponding to the two triggers. All cuts and their effect on the data are
summarized in Table 1. No events survive the analysis cuts.

[REQUIREMENTS | EVENTS REMAINING||

three isolated electromagnetic clusters
which satisfy shower shape cuts,

Er > 5 GeV and pseudorapidity || < 2.5
with matched drift chamber tracks 10
electron kinematics:
Er,,,,, > 13/13/5 GeV or 5
Er,,,,, > 22/5/5 GeV
E; > 10 GeV 0

TABLE 1. Cuts imposed on data sample and their effects.

Backgrounds may be divided into two main classes: physics background produced by
SM processes and backgrounds due to particle misidentification. For this analysis physics
backgrounds (e.g. production of WZ pairs subsequently decaying to eee + Ep ) are neg-
ligible. This leaves background due to misidentification of photons and jets as electrons.
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Our preliminary study indicates that we expect about one background event in our data
sample. A more rigorous estimation of the expected number of background events is under
way.

A combination of Monte Carlo and data was used to determine the detection efficiencies
for this analysis. Monte Carlo events were generated using a modified version of PYTHIA
(5,6) and the DO version of the GEANT (7) detector simulator. The events were sub-
sequently processed by the offline trigger simulator and by the reconstruction software

package.
I Geo/Kin Quality Trigger Track. Overall

mass Acc. Cuts Eff. Cor. Eff.

45.0 15.14+1.1% 69.7+5.2% 92.24+4.5% 74.5+2.9% 7.241.3%
50.0 17.64+1.2% 72.0+5.0% 86.4+4.6% 74.74+2.9% 8.241.4%
55.0 18.14+1.2% 72.245.0% 94.5+4.3% 75.0+3.0% 9.34+1.6%
60.0 19.64+1.3% 71.9+4.9% 87.6+4.5% 75.0+3.0% 9.34+1.6%
65.0 19.14+1.2% 70.245.0% 84.9+4.6% 74.6+2.9% 8.541.5%
70.0 15.941.2% 65.3+5.2% 86.7+4.8% 75.9+3.0% 6.841.2%
75.0 12.64+1.1% 65.1+5.5% 81.84+5.4% 75.6+3.0% 5.14+1.0%
80.0 19.04+1.2% 74.4+4.6% 93.8+4.3% 75.1+3.0% 10.04+1.6%

TABLE 2. Detection efficiencies for each v; mass. A typical example for the contributions of the
statistical and systematic errors to the total error on the overall efficiency is (for m,, = 60 GeV):
9.26 +0.92 (stat) £1.25 (syst) %.

The efficiencies for each v, mass are given in Table 2. The number in each column is
calculated with respect to the previous column going from left to right. The columns are
the following:

e Mass v4: Mass of the vy;

e Geo/Kin Acc: Geometric/Kinematic Acceptance for events in % with at least 3 elec-
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FIG. 8. Overall detection efficiency as a function of v, mass.

trons required, within the || range and passing kinematic cuts;

Quality Selection: percentage of the events within Geometric/Kinematic Acceptance
fulfilling the electron quality requirements;

Trigger: percentage of events passing the quality cuts that fire one of the triggers
used;

Tracking Correction: Correction for known difference between Monte Carlo and real
tracking efficiency for all three electrons combined;

Overall Efficiency: Final number used for limit calculation (see Fig. 3). The apparent
rise in the overall efficiency at 80 GeV/c? vy mass is coming from the fact that the
W’s that decay to v4 with the mass close to the W mass are on the average heavier
than the mass of the W’s that decay to lower mass v4’s because of the W width.

Errors to be considered in this analysis include statistical errors on the Monte Carlo

samples plus systematic errors. Systematic errors arise from the following sources:

e Electron ID:

— statistical uncertainty on the Monte Carlo sample used to determine the efficiency
of the electron quality requirements: 0.8% to 2.4% for electron Er from 5 GeV
to 25 GeV.

— statistical uncertainty in the determination of the tracking efficiency: 2.4% in
forward detector region, and 2.2% in the central region.

— statistical uncertainty on the efficiency requiring drift chamber track match with
calorimeter shower cluster: 1%.

e Differences between software trigger and trigger simulator: 4%



e Uncertainty in integrated luminosity: 5.4 %

The overall systematic error was determined by calculating the efficiencies using the
upper/lower variations in the systematic errors given above. These errors are included in

Table 2.

IV. CONCLUSION

With the results from the previous sections, we are able to exclude a region (beyond the
existing LEP excluded region) on the |U.4|?-m,, plane at 95% C.L. as shown in figure 4.

upper limit on mixing parameter (U,,)’— v, mass plane

= excluded by
oy . .
10 this analysis
£
2
O
(O
[@)]
=
o —2
c 10
A zerocand. events limit — 957 CL
0 excluded by LEP and SLAC
\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\

50 55 40 45 50 55 60 65 /70 /5 80
v, mass (GeV)

FIG. 4. DO preliminary 95% C.L. excluded region on the |U.4|?> — m,, plane for the considered
mixing.

This limit represents the boundary including possible variations as determined by the error
calculation; it was determined using eqn. 2 and the results are preliminary.

From the shape of the limit curve it is evident that the limit is dominated by the phase
space suppression increasing with the v4 mass. This is to be compared to the relatively level
distribution of the overall detection efficiencies (see Fig. 3). The efficiencies in general are
dependent on the mixing for each value of m,,. The increasing decay length (see eqn. 1)
will eventually allow more and more v, to leave the detector undecayed. However, this
effect is not noticeable in this analysis since the decay length of the v, is well below 0.1 mm
for all values of |U.4| in reach. For a v4 mass > 70 GeV the luminosity for the analysed
data is not sufficient to set a limit.

We showed that this analysis is sensitive to the considered mixing case using only data
taken with the D® detector in the 1992 — 1993 run. For the ongoing 1994 — 1995 run
more than six times the integrated luminosity is expected to be delivered to D@, thereby



increasing the sensitivity by a significant amount. We also plan to study other final state
channels and other mixing cases.
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